# Probability and Statistics I 

STAT 3600 - Fall 2021

Le Chen<br>lzc0090@auburn.edu

Last updated on<br>July 4, 2021

## Auburn University <br> Auburn AL

## Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

# Chapter 5. Distributions of Functions of Random Variables 

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Theorem 5.5-1 If $X_{1}, X_{2}, \cdots, X_{n}$ are $n$ mutually independent normal variables with means $\mu_{1}, \mu_{2}, \cdots, \mu_{n}$ and variances $\sigma_{1}^{2}, \sigma_{2}^{2}, \cdots, \sigma_{n}^{2}$, respectively, then the linear function

$$
Y=\sum_{i=1}^{n} c_{i} X_{i} \sim N\left(\sum_{i=1}^{n} c_{i} \mu_{i}, \sum_{i=1}^{n} c_{i}^{2} \sigma_{i}^{2}\right)
$$

Corollary 5.5-2 If $X_{1}, X_{2}, \cdots, X_{n}$ are observations of a random sample of size $n$ from the normal distribution $N\left(\mu, \sigma^{2}\right)$, then the distribution of the sample mean $\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i}$ follows $N\left(\mu, \sigma^{2} / n\right)$.

Theorem 5.5-3 Let $X_{1}, X_{2}, \cdots, X_{n}$ are observations of a random sample of size $n$ from the normal distribution $N\left(\mu, \sigma^{2}\right)$. Then the sample mean

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and the sample variance

$$
S^{2}:=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

are independent. Moreover,

$$
\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)
$$

Example 5.5-1 Let $X$ equal the widest diameter (in millimeters) of the fetal head measured between the 16th and 25 th weeks of pregnancy. Assume that the distribution of $X$ is $N\left(\mu=46.58, \sigma^{2}=40.96\right)$. Let $\bar{X}$ be the sample mean of a random sample of $n=16$ observations of $X$.
(a) Give the value of $\mathbb{E}(\bar{X})$ and $\operatorname{Var}(\bar{X})$.

Example 5.5-1 Let $X$ equal the widest diameter (in millimeters) of the fetal head measured between the 16th and 25th weeks of pregnancy. Assume that the distribution of $X$ is $N\left(\mu=46.58, \sigma^{2}=40.96\right)$. Let $\bar{X}$ be the sample mean of a random sample of $n=16$ observations of $X$.
(b) Find $\mathbb{P}(44.42 \leq \bar{X} \leq 48.98)$.

Example 5.5-1 Let $X$ equal the widest diameter (in millimeters) of the fetal head measured between the 16th and 25 th weeks of pregnancy. Assume that the distribution of $X$ is $N\left(\mu=46.58, \sigma^{2}=40.96\right)$. Let $\bar{X}$ be the sample mean of a random sample of $n=16$ observations of $X$.
(c) How is $W=\sum_{i=1}^{16} \frac{\left(X_{i}-\bar{X}\right)^{2}}{40.96}$ distributed?

Example 5.5-1 Let $X$ equal the widest diameter (in millimeters) of the fetal head measured between the 16th and 25th weeks of pregnancy. Assume that the distribution of $X$ is $N\left(\mu=46.58, \sigma^{2}=40.96\right)$. Let $\bar{X}$ be the sample mean of a random sample of $n=16$ observations of $X$.
(d) Find $\mathbb{P}[6.262<W<30.58]$.

Example 5.5-1 Let $X$ equal the widest diameter (in millimeters) of the fetal head measured between the 16th and 25th weeks of pregnancy. Assume that the distribution of $X$ is $N\left(\mu=46.58, \sigma^{2}=40.96\right)$. Let $\bar{X}$ be the sample mean of a random sample of $n=16$ observations of $X$.
(a) Give the value of $\mathbb{E}(\bar{X})$ and $\operatorname{Var}(\bar{X})$.
(b) Find $\mathbb{P}(44.42 \leq \bar{X} \leq 48.98)$.
(c) How is $W=\sum_{i=1}^{16} \frac{\left(X_{i}-\bar{X}\right)^{2}}{40.96}$ distributed?
(d) Find $\mathbb{P}[6.262<W<30.58]$.

Ans: (a) ... (b) ... (c) ... (d) ...

Theorem 5.5-4 (Student's $t$ distribution) Let

$$
T=\frac{Z}{\sqrt{U / r}}
$$

where $Z$ is a random variable that is $N(0,1), U$ is a random variable that is $\chi^{2}(r)$, and $Z$ and $U$ are independent. Then the pdf of $T$ is

$$
f(t)=\frac{\Gamma((r+1) / 2)}{\sqrt{\pi r} \Gamma(r / 2)} \frac{1}{\left(1+t^{2} / r\right)^{(r+1) / 2}}, \quad-\infty<t<\infty .
$$

This distribution is called Student's $t$ distribution.

We can use the results of Corollary 5.5-2 and Theorem 5.5-3 and Theorem 5.5-4 to construct an important $T$ random variable. Given a random sample $X_{1}, X_{2}, \cdots, X_{n}$ from a normal distribution, $N\left(\mu, \sigma^{2}\right)$, let

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \quad \text { and } \quad U=\frac{(n-1) S^{2}}{\sigma^{2}}
$$

Then the distribution of $Z$ is $N(0,1)$ by Corollary 5.5-2. Theorem 5.5-3 tells us that the distribution of $U$ is $\chi^{2}(n-1)$ and that $Z$ and $U$ are independent. Thus,

$$
T=\frac{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) S^{2}}{\sigma^{2}} /(n-1)}}=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

has a Student's $t$ distribution with $r=n-1$ degrees of freedom by Theorem 5.5-4. We use this $T$ to construct confidence intervals for an unknown mean $\mu$ of a normal distribution.

Exercises from textbook 5.5-1, 5.5-2, 5.5-3, 5.5-4, 5.5-5, 5.5-6, 5.5-9.

